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Roll coating is distinguished by the use of one or more gaps between rotating cylinders
to meter a continuous liquid layer and to apply it to a continuous flexible substrate.
Of the two rolls that make a forward or reverse roll coating gap, one is often covered
by a layer of more-or-less deformable elastomer. Liquid carried into the converging
side of the nip can develop high enough pressure to deform the resilient cover,
which changes the nip profile and thus alters the velocity and pressure field. This
elastohydrodynamic coupled action is not yet well understood. Theoretical modelling
has to take into account the viscous flow, the roll deformation and the free-surface
effects in order to predict the flow behaviour.

In this work the flow between a rigid and a deformable counter-rotating roll that
shares the same angular speed is described by the lubrication approximation together
with a viscocapillary model, based in the film-flow equation, for the film-split region.
The deformation of the elastomer layer is modelled by Hookean springs oriented
radially, which constitute a one-dimensional model. The stability of the system to
transverse perturbation is analysed by examining the time-dependent response to
infinitesimal disturbances in order to identify those that grow fastest.

The corresponding system of equations is solved by Newton’s method with first-
order continuation. The relationship between coating thickness, operational parame-
ters (loading force, gap setting, roll velocities, etc.), liquid properties and the properties
of the cover is reported, as well as the critical capillary number for onset of ribbing
and wavelengths of the ribbing pattern predicted by the mathematical model. The
results indicate how a deformable cover may be used in order to delay the onset of
ribbing for a desired coating thickness.

In order to validate the theoretical predictions of the viscocapillary/Hookean spring
model, the symmetric film-split flows between a pair of rigid rolls and a pair consisting
of a deformable roll and a rigid one were also analysed experimentally.

1. Introduction
Roll coating is distinguished by the use of one or more gaps between rotating

cylinders to meter a continuous liquid layer and to apply it to a continuous flexible
substrate called a web. The metering and application functions can be performed
in gaps between counter-rotating cylinders, which is called forward roll action, or
between co-rotating ones, which is called reverse roll action. This paper deals with
forward roll action. Figure 1 sketches examples of three-roll and four-roll coaters.
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Figure 1. Examples of forward roll coaters. (a) Three-roll transfer coater with feed pan.
(b) Four-roll transfer coater with feed pond.

Despite the wide variety of roll coating systems, each of them can be broken into
similar parts, as was mentioned by Coyle, Macosko & Scriven (1986) and developed by
Benjamin, Anderson & Scriven (1995). In order to understand the whole operation,
one needs to understand first individual flows between pairs of rolls in both the
forward and reverse modes. Benjamin et al. (1995) used simple mass balances to
combine the information derived from the analysis of these unit flows between each
pair of rolls to relate the thickness of the delivered layer, or the coat weight, to
separation, speed ratio and roll radii of each roll pair.

The flows between pairs of rotating rigid rolls have been extensively studied. When
the roll radii are much larger than the distance between the roll surfaces, as is
often true, the flow in the gap region is nearly rectilinear and the governing Navier–
Stokes system, or its modification for shear-sensitive liquids, is well approximated by
lubrication theory, at least far enough from the menisci upstream and downstream.
With this approximation Greener & Middleman (1975) analysed flows of Newtonian
and non-Newtonian power-law liquids between rolls of equal radii and speeds in the
forward roll mode. However, downstream from the region of closest approach between
the rolls, the liquid splits into two films, one attached to each roll. Near this film split
meniscus, the flow field is two-dimensional and bounded by a free surface. Accurately
describing it requires solving the complete Navier–Stokes system. Nevertheless, a
common approach has been to proceed with the lubrication approximation and
adopt a plausible boundary condition at the film split meniscus.

Several options appear in the literature. The first and simplest choice is to set both
the pressure and the pressure gradient to zero at the film-split meniscus. This condition
is known as Reynolds’ boundary condition, and it is the least accurate of the available
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boundary conditions used at the film-split free surface. A natural improvement is
to set the pressure at the film-split to be subambient, due to the capillary pressure
jump associated with the meniscus curvature. An extra equation is still needed to
locate the position of the meniscus. A condition postulated by Hopkins (1957), and
used by Savage (1977a), is to locate the film-split meniscus at the first stagnation
line (point in a cross-section) downstream of the plane through the centres of the
rolls and midway between the roll surfaces. Coyle et al. (1986) extended this idea
to the asymmetric case, postulating that the film-split line is located at the point at
which both the velocity and its derivative in the direction perpendicular to the flow
vanish. This condition does not locate a stagnation line, except in the symmetric
situation or when one of the rolls is stationary. Savage et al. (1992) modified Coyle’s
approach and instead located the film-split meniscus at the first stagnation line, i.e.
at the point at which both velocity components vanish. This leads to a relation
between film thickness ratio and roll speed ratio that is close, in some of the range,
to solutions of the full Navier–Stokes system. A different approach was adopted by
Savage (1977a) and later by Fall (1985) to set the film split boundary condition. They
used the results reported by Coyne & Elrod (1970), that solved approximately the
Navier–Stokes system of equations near the meniscus. The predictions obtained with
the lubrication approximation with Hopkin’s boundary condition, the full Navier–
Stokes system (solved by Galerkin’s method and finite element basis functions), and
an asymptotic expansion of the Navier–Stokes system appropriate when the gap is
much less than the roll diameter were compared by Coyle et al. (1986). They found
that the lubrication model is accurate only at high capillary number (the product of
mean roll speed and viscosity divided by surface tension), where the effect of surface
tension is weak. The lubrication model is inaccurate when the effect is strong, i.e.
low capillary number, because the ad hoc boundary condition does not adequately
represent the capillary pressure gradient induced by the meniscus curvature in the
film-split region and the accompanying two-dimensional flow.

Kubota & Scriven (1993) employed what is called a viscocapillary model to describe
film-splitting flow: the flow near the meniscus is approximated by the Deryagen &
Levi (1959) modification of the Laudau–Levich equation of the flow carried out of
a pool by a roll that dips into it, i.e. a dip-coating flow, and elsewhere the flow is
approximated by lubrication flow.

In practice, rigid gaps, i.e. pairs of rigid rolls, are rare in roll systems, except in
reverse roll metering and meniscus coating (Gaskell et al. 1995). Usually one of the
rolls is covered with a resilient layer that deforms during operation, as shown in
figure 1. The main purposes of using a deformable roll cover are: (i) to avoid the risk
of clashing two hard rolls (typically made of steel); (ii) to obtain much thinner films
than ordinarily can be achieved by rigid roll coating; (iii) to reduce or delay the onset
of the ribbing defect; and (iv) to transfer an already metered film (wipe roll coating).
The use of deformable rolls is not restricted to roll coating methods. In die coating,
a die is pressed against a rubber-covered backup roll. A very narrow gap is formed
and shear rates of the order of 105 s−1 can occur, drastically reducing the viscosity of
the liquid if it has a shear-thinning behaviour.

The deformation of the roll cover alters the shape of the boundaries of the
coating flow. That flow generates pressure and viscous stresses that in turn affect the
deformation of the roll cover. Hence the viscous liquid flow between the rolls and the
elastic deformation of the roll cover are coupled in what is called elastohydrodynamic
behaviour. How this behaviour depends on the thickness and properties of the roll
cover, and how it influences wet coating thickness (which translates to ‘coat weight’)
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Figure 2. Ribbing instability in a forward roll coating gap. The field of view is approximately
10 cm wide.

versus roll loading and roll speeds, and how it affects crossweb and downweb coating
uniformity and roll drag are not yet completely understood.

Analysis of flows between a rigid and a deformable roll is rare. Coyle (1988)
launched an analysis by using the lubrication approximation to describe the flow field
and an array of independent linear one-dimensional radial elements to describe the
elastic rubber deformation. The effect of the free surfaces of the liquid was not taken
into account in his work. The coupling between solid deformation and liquid flow
also occurs in the elastohydrodynamic lubrication of bearings. The fundamentals of
this area have been well established, especially by Dowson & Higginson (1966).

Carvalho & Scriven (1994a) took up Coyle’s analysis and examined the differences
between the use of a one-dimensional linearly elastic model and a one-dimensional
nonlinearly elastic model that better describes the response of rubber when defor-
mation is appreciable. They also explored the use of a two-dimensional plane-strain
approximation, that accounts for the Poisson’s ratio of the rubber. The approach
did not take into account the thickness of the elastic layer. The deformation of
the roll surface was derived from that of an elastic half-space. Both models were
found to predict the same trends and in the cases examined the flow rates differed
by no more than 10%. The most important conclusion of the comparisons is that
the one-dimensional model, although much simpler, predicts fairly well the overall
performance of forward roll action in a deformable gap.

Although the location of the film split and the stability of the flow with respect
to transverse disturbances is strongly affected by capillary number, surface tension
effects were not consider by either Coyle (1988) or Carvalho & Scriven (1994a).

The first part of this paper describes the analysis of a forward deformable roll
gap, with rolls sharing the same angular speed, by means of a viscocapillary model,
i.e. the lubrication approximation for most of the flow and a flow with capillary
pressure gradient as described by the film flow equation of Deryagen & Levi (1959)
in the film-split region, together with a one-dimensional elastic radial elements of the
resilient roll cover.

One of the drawbacks of forward roll coating gaps is that, at high speeds, the
liquid layer on each of the roll surfaces has a wavy thickness profile in the transverse
direction, a pattern commonly called ribbing and also known as corduroy and pin-
striping (see figure 2). In the second part of this paper, the stability of the flows
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Figure 3. Gap profile with deformable roll. (a) Positive gap, i.e. clearance between undeformed
rolls. (b) Negative gap, i.e. interference between undeformed rolls. The parameter H0 has different
meanings in the two situations.

obtained with the viscocapillary model to transverse perturbation is analysed by
examining the time-dependent response to infinitesimal disturbances in order to
identify those that grow fastest, following Fall’s (1985) approach, but here including
the roll deformation and a better description of the flow near the meniscus. The goal
is to understand the effect of the roll cover deformation on the onset of ribbing. The
predicted critical capillary number, and the wavelengths of the ribbing pattern are
compared with values obtained from experiments.

2. Mathematical formulation of the base flow
Each gap in a forward roll coater can be operated two ways. One is to keep the

axes of the two rolls parallel, with one axis fixed and the other movable in response to
externally imposed loading (usually reported as force per unit length). The gap takes
the value at which the integrated traction of the liquid on the movable roll equals
the loading. If one of the rolls is deformable, then to each loading there corresponds
not only a centre-to-centre distance between the rolls, but also a roll deformation
and a gap profile that depends on that deformation. This is called load-controlled,
or force-controlled operation. The other way is to fix the axes of both rolls. This is
called fixed-gap operation. Actually there are intermediate ways in which the loading
is a function of the centre-to-centre distance, as when the movable roll is loaded by
springs or equivalents. This is called compliant-loading operation.

When the centre-to-centre distance is greater than the sum of the roll radii, the rolls
do not intersect each other when they are undeformed: there is a positive gap (Coyle
1988), as in figure 3(a). When the centre-to-centre distance is less than the sum of
the roll radii, the rolls necessarily would intersect each other were they undeformed:
there is a negative gap, or nip, as in figure 3(b). In a force-controlled operation, a
small enough loading yields a positive gap, whereas a large enough loading produces
a negative gap. In this paper, only positive gaps are considered.

In analysing roll coater gaps it is convenient to suppose that the centre-to-centre
distance between the rolls of a pair is set, and to evaluate the loading required to
maintain that distance. This tactic is used here, but in no way limits the results to
fixed-gap operation.

2.1. Lubrication approximation

In flows where the particle paths (streamlines in the steady-state problem) are almost
parallel, scaling arguments can be used to simplify the Navier–Stokes equation to an
ordinary differential equation for pressure that captures the most important features
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of the problem. In most of the gap region, the lubrication approximation is valid and
the pressure distribution is given by (cf. Cameron 1966)

dP

dX
=

12µ

H(X)3

[
VH(X)− Q

]
, (1)

where X is the distance along the gap from the plane through the two roll axes,
V ≡ (VA + VB)/2 is the average surface velocity of the rolls, VA being the surface
velocity of the one (upper roll in figure 3) which is taken to be deformable, and VB
being the surface velocity of the other (lower roll in figure 3) which is not deformable.
The average surface velocity is related to the speed ratio S ≡ VA/VB by

V = 1
2
(S + 1)VB.

S > 0 describes forward roll action and S < 0 reverse roll action. S = 0 amounts to
a stationary but deformable wiper bar. H(X) ≡ HA(X)−HB(X) is the local clearance
between the roll surfaces, HA and HB being the respective distances from a reference
plane Y = 0 that is tangent to the rigid roll and perpendicular to the plane through the
axes (figure 3). Q is the flow rate of liquid through the gap per unit length of the rolls.

The circular profiles of the undeformed roll surfaces are conveniently and well ap-
proximated by arcs of parabola. For the positive gap case (figure 3(a)), the expressions
are

HA(X) = 2H0 + RA − (R2
A −X2)1/2 + D(X) ≈ 2H0 +

X2

2RA
+ D(X),

HB(X) = −RB + (R2
B −X2)1/2 ≈ − X2

2RB
.

It follows that the local clearance is

H(X) ≡ HA(X)−HB(X) = 2H0 +
X2

R
+ D(X). (2)

2 H0 is the clearance between the undeformed rolls. D(X) is the local displacement
of the deformable roll surface in the direction parallel to the plane through the roll
axes. The local displacement is related to the local pressure in the flowing liquid by a
constitutive equation. R is the effective radius of the two rolls:

1

R
≡ 1

2

(
1

RA
+

1

RB

)
.

Two boundary conditions are needed in order to integrate (1). A common approach
is to disregard the feed condition and suppose that it is far enough from the gap
plane that the pressure is substantially atmospheric upstream at the inlet boundary:

P (−∞) = 0. (3)

If the free-surface effects downstream are taken into account, the pressure at the
film meniscus is subambient, due to the capillary pressure jump associated with the
meniscus curvature:

P (Xm) = − σ

Rm
. (4)

This introduces two more unknowns: the radius of curvature of the meniscus
Rm and the position of the film split Xm. Two more conditions at the downstream
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Figure 4. Dip coating from a quiescent pool with a meniscus-limiting obtruction.
Rm is the radius of curvature of the meniscus.

boundary are needed in order to close the system of equations. Different choices,
reviewed in the introduction section, are available in the literature.

If the capillary number is small, i.e. the effect of surface tension is strong, there
is a recirculation attached to the film-split meniscus and the first stagnation point is
not located at the free surface, invalidating the assumption of some of the models
described in the introduction. Here, the equation that describes the film flow entrained
by a solid surface moving in its own plane and out of a virtually quiescent liquid
pool, as in a dip-coating operation, is used at the film-split boundary to complete the
formulation of the problem.

2.2. Viscocapillary model

The dragging of liquid out of a pool by an ascending solid surface was first analysed by
Landau & Levich (1942); cf. figure 4. They found the final film thickness by solving
a film profile equation that approximates, in the manner of matched asymptotic
expansions, the local balances of viscous, gravity, capillary, and pressure forces along
the emerging film. Later Deryagin & Levi (1959) specialized the analysis to the simpler
case of a pool whose free surface is narrow and curved enough to make the effect of
gravity negligible compared to that of the capillary pressure induced by the action of
surface tension in the curved surface. Their relation between the final layer thickness
H∞ and the radius of curvature Rm of the meniscus of the virtually quiescent liquid is

H∞ = 1.34 Rm Ca
2/3, Ca ≡ µV/σ.

Ca is the capillary number, σ is the liquid surface tension, µ is the liquid viscosity and
V is the plate velocity. This specialization of the Landau–Levich equation is often
given the same name. The Landau–Levich equation is strictly valid at low capillary
number (Ca � 1).

Because the liquid immediately under the middle of the film-split meniscus moves
relatively slowly and the dominant forces in the layers being drawn from it by the
two rolls are viscous drag and capillary pressure, the flow in the film-split region
resembles the one encounter when a plate drags a liquid out of a pool. This approach
was first used by Kubota & Scriven (1993), and later by Carvalho & Scriven (1994b)
and Gaskell et al. (1995). The final layer thickness on each roll can be approximated
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by the Landau–Levich equation:

HA = 1.34 Ca2/3

(
2S

S + 1

)2/3

Rm and HB = 1.34 Ca2/3

(
2

S + 1

)2/3

Rm. (5)

The capillary number Ca is defined in terms of the average roll speed V , i.e. Ca ≡
µV/σ. Balancing inflow and outflow leads to

Q

2V
(1 + S) = S HA +HB. (6)

Q is the total flow rate through the gap. Equations (5) and (6) can be rearranged as

HA =
Q

2V

(S + 1)S2/3

1 + S5/3
, HB =

Q

2V

(S + 1)

1 + S5/3
, (7)

Rm =
1

1.34 Ca2/3

Q

2V

(S + 1)

1 + S5/3

(
S + 1

2

)2/3

. (8)

Thus the layer thickness on each roll is a function only of the flow rate Q and roll
speeds.

The ratio of layer thicknesses, or film-thickness ratio, as a function of the speed
ratio follows naturally from (7):

HA

HB

=

(
VA

VB

)2/3

.

The 2/3 power-law dependence accords well with the solution of the full Navier–
Stokes system at vanishing Reynolds and Stokes numbers (Coyle et al. 1986). The
film-split position Xm is dictated by geometric requirements. If the meniscus is simply
modelled as an arc of circle that is tangent to uniform films where it joins them, as
Greener & Middleman (1975) took it to be, the meniscus coordinate Xm is given by

H(Xm) = HA +HB + 2Rm.

However, from the film-split position to the uniform layer downstream, the curvature
of the meniscus gradually changes, as indicated in figure 5. Kubota & Scriven (1993)
matched a meniscus of constant curvature with the asymptotic solution of the equation
of film flow on a rising plate, instead of with uniform films. They found that this
expedient improved the agreement of the viscocapillary model with the Navier–Stokes
solution at higher capillary numbers. In their scheme, the position Xm of the film split
is obtained from (refer to figure 5)

H(Xm) = K(HA +HB) + Rm(cos θA + cos θB).

K , θA and θB are evaluated with formulas from the asymptotic solution of the film
profile equation:

K = 1.644,

θA = arctan

{
−0.644

(
6CaS

S + 1

)1/3
}
, θB = arctan

{
−0.644

(
6Ca

S + 1

)1/3
}
.

Replacing these constants and the film thickness expressions (7), and using the local
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Figure 5. Sketch of film-split meniscus. The curvature of the meniscus gradually changes from a
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clearance (2) yields the meniscus position Xm:

H(Xm) = 2H0 +
X2
m

R
+ D(Xm) = 1.644

Q

2V

1 + S

1 + S5/3
(1 + S2/3)

+Rm

{
1

1 + 0.414(6CaS/(1 + S))2/3
+

1

1 + 0.414(6Ca/(1 + S))2/3

}
. (9)

In sum, the boundary conditions on (1) are the pressure imposed at the inlet (3),
the pressure imposed at the film split, the capillary pressure jump (4), the radius of
curvature (8), and the geometric relation (9). In order to integrate (1), the displacement
of the soft roll D(X) has to be related to the pressure distribution P (X). We chose for
the present purpose the one-dimensional elastic spring model, that is described next.

2.3. One-dimensional Hookean model

One-dimensional models amount to a continuous distribution of parallel independent
springs. A discrete analogue is diagrammed in figure 6. The deformation at each
spring depends solely on the pressure at its terminus in the roll surface.

Such a model represents neither shear stresses in the roll cover nor its incompress-
ibility. Consequently, it does not account for the contributions to deformation at one
place on the surface by pressures acting at others. The Hookean version, which was
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used by Coyle (1988), makes the local displacement directly proportional to the local
pressure:

D(X) =
1

K
P (X). (10)

The spring constant K is related to the roll cover properties: elastic modulus E,
Poisson’s ratio ν, and thickness L.

Dowson & Jin (1989) used a similar approach, called the constrained column model.
Johnson (1985) showed that the spring constant K strongly depends on the values
of Poisson’s ratio and that the model does not formally apply for incompressible
materials, i.e. ν = 0.5. As Poisson’s ratio approaches 0.5, the spring constant grows
unbounded and the deformation at each point tends to zero. At vanishing Poisson’s
ratio (ν = 0), the spring constant is simply K = E/L. In general, K = αE/L, where α
is a function of Poisson’s ratio.

Dowson & Jin (1989) showed that the one-dimensional model (constrained-column
model) can be applied to predict elastic deformation if Poisson’s ratio is less than
0.45 and the ratio of the loading width to the deformable layer thickness is greater
than 2.

In most applications of deformation roll coating, the length of the bead (loading
width) is greater than twice the roll cover thickness. Although most materials used in
roll cover have high Poisson’s ratio (close to 0.5), at which the one-dimensional spring
model does not formally apply, it gives an approximation of the overall behaviour of
the incompressible roll cover.

2.4. Solution of the equation system

In order to solve the equations most efficiently, appropriate units have to be chosen
for the variables and the equations thereby written in dimensionless form. Accordingly

x ≡ X

(RH0)1/2
, h(x) ≡ H(X)

H0

, d(x) ≡ D(X)

H0

, q ≡ Q

2VH0

, pv ≡
PH0

µV

(
H0

R

)1/2

.

The equation system in dimensionless form becomes

dpv
dx

=
12

[h(x)]2
− 24q

[h(x)]3
, (11a)

pv(−∞) = 0, (11b)

pv(xm) = − 1

Ca(R/H0)1/2rm
, (11c)

rm =
1

1.34Ca2/3
q

1 + S

1 + S5/3

(
1 + S

2

)2/3

, (11d)

h(xm) = 1.644q
1 + S

1 + S5/3
(1 + S2/3)

+ rm

{
1

(1 + 0.414(6CaS/(1 + S))2/3)
+

1

(1 + 0.414(6Ca/(1 + S))2/3)

}
, (11e)

h(x) = 2 + x2 + d(x), (11f )

d(x) = Ne pv(x). (11g)

The solution of the equation system obtained depends on: the dimensionless gap
H0/R; the capillary number Ca; the speed ratio S; and the modified elasticity
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number Ne. The latter measures the relative magnitudes of the liquid pressure, which
is proportional to viscosity and average roll speed, and elastic stress in the roll cover,
which is proportional to the empirical spring constant K:

Ne ≡ µV

KR2

(
R

H0

)5/2

.

In this formulation, the elementary elasticity number Es ≡ µV/KR2 appears only
in combination with H0/R.

The equation system (11) was solved by using a finite difference formula to approx-
imate the pressure derivative. The domain was divided into n intervals by n+ 1 nodes
(equal intervals would be convenient, but suitably unequal ones proved more efficient:
see below). The values of pressure, displacement and coordinate at each of the nodes
except the inflow boundary, together with the flow rate, were the unknowns.

The position of the inflow boundary was so chosen that the flow rate was insensitive
to locating it any further upstream.

The resulting algebraic system of equations, 3n + 1 in number, is nonlinear. To
solve this system, Picard iteration would be simple: evaluate the pressure profile with
the values of the displacements (roll profile) from the previous iteration; with the
new pressure profile evaluate the new displacement distribution; and so on. As the
literature about this procedure in elastohydrodynamics testifies (Dowson & Higginson
1966), it is generally slow to converge if it converges at all.

The method of choice for this type of problem is Newton’s method, which requires
evaluation of the full Jacobian matrix, i.e.

u(n+1) = u(n) + ∆u; J(∆u) = −R.
u is the vector of unknowns, R is the vector of residuals of the discretized equations,
and J is the Jacobian matrix. The entries of the Jacobian are the sensitivities of the
residuals to the unknowns, i.e.

Jij ≡
∂Ri

∂uj
.

The initial approximation in Newton’s method was determined by first-order con-
tinuation in the parameter space, i.e. it was evaluated from the previous solution and
the latter’s sensitivity to whichever parameter ξ, e.g. capillary number or elasticity
number, was being changed:

u(0)(ξi+1) = u(ξi) +
∂u

∂ξ
∆ξ, J

(
∂u

∂ξ

)
= −∂R

∂ξ
.

By controlling the step size by which the parameter was changed, convergence was
achieved within 3 to 5 iterations and was generally at the quadratic rate expected of
Newton iteration as the solution is approached. In the range of parameters explored,
n = 600 intervals sufficed; increasing n to 800 altered the flow rate and film-split
location by less than 0.1%.

The Jacobian matrix was stored in a compressed sparse row format and at each
Newton iteration the system of linear equations was solved by the gmres iterative
algorithm with preconditioning (Saad & Schultz 1986). Only at the first Newton step
was a preconditioner matrix evaluated; what was employed was an incomplete LU
factorization (Saad & Schultz 1986) of the Jacobian matrix. The same preconditioner
was used in the subsequent Newton steps. This saved a lot of computing time, because
at each parameter continuation step, only one Gauss elimination (incomplete) was
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performed. The dimension of the Krylov subspace used in gmres was fixed at 10. The
total computing time (CPU time) did not seem to diminish with the use of a larger
subspace. A representative run consumed approximately 7 s in a Hewlett-Packard
workstation, series 735.

The pressure distribution of roll coating flows has regions of steep gradient and
others of high curvature. In order to reduce the error of approximating the solution
by finite differencing, the number of uniformly spaced nodes needed in some extreme
cases would be very large. This was avoided by using the continuation-adaptive
strategy explained by Benner, Davis & Scriven (1987). The nodes were relocated as
the parameters were changed in continuation in such a way that they concentrate in
regions where the pressure profile was steep or highly curved. The weighting function
chosen as the means of distributing the nodes after each parameter continuation step
was (cf. Thompson, Warsi & Mastin 1985)

W (x) = (1 + γ2|k|)(1 + α2p2
x)

1/2,

where px is the slope and k ≡ pxx/(1 + p2
x)

3/2 is the curvature of the pressure profile.
Close spacing of nodes where the gradient is high is emphasized by making α large,
whereas concentration where curvature is high is emphasized by making γ large.
Choosing α = 1 and γ = 1 seemed to make computing time (CPU time) minimum or
nearly so.

Between successive Newton iterations at a given parameter set, the fraction of
the total domain length occupied by each interval remained constant as the outflow
boundary node moved in order to satisfy the film-split condition, (9).

3. Cross-flow instabilities: onset of ribbing
If the roll surface speed is too fast, or the liquid viscosity too high, the film-split

meniscus in forward roll coating becomes wavy in the cross-flow direction and the
films emanating from it become ribbed (see figure 2). In this section, a stability analysis
of forward deformable roll coating is developed for positive gaps and the linear spring
model of roll cover deformation. The goal is to predict the critical parameters at which
the onset of ribbing occurs and to study how the roll deformation may affect this
flow instability.

3.1. Formulation of the linear stability analysis

It is assumed that the wavy character can be attributed to a small perturbation in
the uniform film-split meniscus that grows with time. Thus the first step in the linear
stability analysis is to perturb the steady-state flow with an infinitesimal sinusoidal
disturbance in the transverse direction, as illustrated in figure 7:

x∗m(z, t) = xm + εeβt sin(2πnz),

p∗(x, z, t) = p(x) + g(x)εeβt sin(2πnz),

h∗(x, z, t) = h(x) +Ne g(x)εeβt sin(2πnz).

 (12)

Here the small parameter ε is the amplitude of the transverse disturbance, n is its
wavenumber (λ ≡ 1/n is the wavelength), and β is its growth factor. The growth
factor is a function of the wavelength. On the grounds that in reality disturbances
of all wavelengths are present, arising from molecular fluctuations if not external
influences, the wavelength for which β is largest is taken to be the most dangerous,
i.e. the fastest growing and likely to be close to the wavelength of the finite-amplitude
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Figure 7. The film-split meniscus is perturbed in the transverse direction z by a sinusoidal
disturbance.

ribbing that develops if β is positive. If β is negative at all wavelengths, all infinitesimal
disturbances decay in time and the system is said to be stable.

The unperturbed variables xm, p(x) and h(x) describe the base flow, i.e. they are the
solution of the steady-state one-dimensional problem, given by equations (11).

The disturbed variables must satisfy the time-dependent two-dimensional Reynolds
equation:

∂

∂x

(
h∗

3 ∂p
∗

∂x

)
+

∂

∂z

(
h∗

3 ∂p
∗

∂z

)
= 12

(
∂h∗

∂x
+
∂h∗

∂t

)
.

Replacing the perturbed variables, (12), and dropping the terms of order ε2 and
higher leads to an ordinary differential equation that governs the amplitude function
g(x):

d2g

dx2
+

{
3 Ne

h(x)

dp

dx
− 12 Ne

h(x)3
+

3

h(x)

dh

dx

}
dg

dx

+

{
6 Ne

h(x)2

dp

dx

dh

dx
+

3 Ne

h(x)

d2p

dx2
− 4π2n2 − 12βNe

h(x)3

}
g = 0, (13)

Because the disturbances of interest are those that distort the free surface, the pressure
far upstream is presumed to be unperturbed, which implies that

g(−∞) = 0. (14)

In the same way, placing the perturbed variables (12) in the pressure boundary
condition at the film-split meniscus (11c) and dropping terms of order ε2 and higher
leads to a boundary condition on g(x) at the film-split meniscus:

g(xm) =

−
(

dp

dx

)
xm

+
1

Carmh(xm)

(
H0

R

)1/2(
dh

dx

)
xm

+
4π2n2

Ca

H0

R

1− Ne

Carmh(xm)

(
H0

R

)1/2

.

(15)

The growth factor β is evaluated by imposing continuity of flow toward and away
from the film-split meniscus:

β =
1

F(1 + S2/3)− 1

h2(xm)

12

{(
dg

dx

)
xm

+

(
d2p

dx2

)
xm

+
2

h(xm)

(
dp

dx

)
xm

[(
dh

dx

)
xm

+Ne g(xm)

]}
, (16)
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Figure 8. Comparison of the flow rate predictions of Hopkins’ model, viscocapillary model and
Navier–Stokes solution. H0/R = 10−2.

where

F ≡ hB

h(xm)
.

The equation system governing the amplitude function g(x) consists of the second-
order differential equation (13) and boundary conditions (14) and (15). The growth
factor β, given by (16), appears in one of the coefficients of (13). The nodes used
to discretize the differential equation are the same ones used to integrate Reynolds’
equation for the base flow.

A simple Picard iteration was used to solve this nonlinear system. Generally,
convergence was obtained in 3 or 4 iterations. For a given base flow, the growth
factor β was calculated at 200 different wavenumbers n, and the CPU time consumed
for this task was around 2 s in a HP workstation, series 735.

4. Results
Although the mathematical formulation presented in the previous section is valid

at any speed ratio other than zero, the results presented here are restricted to the
symmetric case, i.e. S = 1.

4.1. Comparison of models of flow in gaps between rigid rolls

Before examining analyses of flow in deformable gaps, it is instructive to compare
the viscocapillary model of flow between rigid rolls with earlier models, in which
Hopkins’ boundary condition was used at the film split, and with solutions of the
Navier–Stokes system at vanishing Reynolds and Stokes number (Coyle et al. 1986).
In figure 8 dimensionless flow rate q in symmetric film-split flow is plotted versus
dimensionless average roll speed, or capillary number; in figure 9, film-split location
downstream of the minimum clearance is plotted.

At small capillary number (Ca < 1), the effect of surface tension acting through
capillary pressure at the film-split meniscus is strong enough that the viscocapillary
model predicts flow rates within 5% of the Navier–Stokes solution, and the film-split
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Figure 9. Comparison of the position of meniscus predictions of Hopkins’ model, viscocapillary
model and Navier–Stokes solution. H0/R = 10−2.

location within 15%. Although the meniscus position predicted by Hopkins’ model is
close to the complete two-dimensional solution, the flow rate is largely overpredicted
(see figure 8).

Surprisingly, the predictions of the viscocapillary model at capillary number of the
order of 1 are still close to the Navier–Stokes solution, even though the Landau–
Levich equation is not valid at Ca = 1. At this value of capillary number, the results
obtained with the Hopkins’ boundary condition still overpredicts the flow rate through
the gap.

At capillary number of the order of 10, which is less often encountered in roll
coating practice, the effects of viscous stress are strong enough that Hopkins’ boundary
condition leads to predictions closer to the Navier–Stokes solution.

The largest capillary number explored in this work is of the order of 1. Because the
viscocapillary predictions obtained at this value are still close to the Navier–Stokes
solution, we used the viscocapillary model for all sets of parameters.

4.2. One-dimensional base flows

In the spring model of roll cover deformation, the elasticity number Es ≡ µV/KR2

appears only in combination with the ratio of roll radius to half-gap, R/H0 (or
diameter to gap), in what is called the modified elasticity number Ne. Thus, a change
in Ne can be ascribed variously to changes in the centre-to-centre distance, as reflected
in H0, or the spring constant K , which would represent a change in the elastic modulus
E, cover thickness L, or Poisson’s ratio ν. For clarity, however, the predictions of
the model are presented in terms of the ordinary elasticity number Es ≡ µV/KR2,
the capillary number Ca = µV/σ, and the dimensionless gap H0/R. In flow through
deformable (positive) gaps, typical values of these dimensionless parameters are

µV

KR2
≈ 0 to 10−6,

H0

R
≈ 10−4 to 10−2, Ca =

µV

σ
≈ 10−3 to 1.

Figure 10 shows that when the gap is large enough, the pressure which develops
between the rolls is insufficient to deform appreciably the rubber cover and the flow
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Figure 10. Flow rate at different undeformed gaps and elasticity numbers. Ca = 0.1.
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Figure 11. Film-split location at different undeformed gaps and elasticity numbers. Ca = 0.1.

rate is linear with clearance, just as with two rigid rolls. As the gap is narrowed and
higher pressure develops, the rubber cover deforms and the flow rate is greater than
between rigid rolls at the same (undeformed) gap. More importantly, the effect of
the (undeformed) gap setting diminishes as the gap is narrowed and the roll cover
made softer – regardless of capillary number, whose effect is small and not shown.
This lessened sensitivity to gap and roll cover is one of the advantages of using a
rubber-covered roll.

Figure 11 shows that when the gap is large enough the film split location approaches
the rigid rolls configuration, but as the gap is narrowed the deformation of the roll
forms a more and more elongated channel of very nearly constant clearance, as
depicted in figure 12, and the film split locates further and further upstream – all at a
fixed capillary number. Figure 13 shows that as capillary number falls, for instance by
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raising surface tension, and as the elasticity number increases, for instance by making
the roll softer, the film split is drawn downstream.

The pressure peak in the converging part of the gap and its valley in the diverging
part become more pronounced as the rolls are moved closer together, as in plain from
figure 14. There the profiles terminate at the film split, where the subambient pressure
is due to the capillary pressure jump at the curved interface or meniscus. The jump is
greater the narrower the undeformed gap because the meniscus is more sharply curved.
The narrower the gap, the longer the region of nearly constant (negative) pressure
gradient, which coincides with the region of nearly constant clearance: the flow there
is a virtually constant combination of drag flow and pressure-gradient-driven flow.
The bottom of the pressure valley is the lowest pressure in the flow. If it is below the
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sum of the partial pressure of dissolved gas and the vapour pressure of the liquid, a
potential exists for cavitation in the flow: all that needed are nuclei of bubble growth.

Figure 15 shows that as the effect of surface tension rises and capillary number
falls, not only does the film split locate further downstream and its meniscus curvature
diminish, but also the pressure gradient lessens. Because the instability that leads to
a wavy free surface in the transverse direction is driven by this pressure gradient (cf.
Pearson 1960), the likelihood of ribbing falls with capillary number, just as between
rigid rolls.

The effect of elasticity number on the pressure profile, at fixed capillary number and
roll spacing, i.e. undeformed gap, is illustrated in figure 16. The higher the elasticity
number, i.e. the softer the roll, the more the resilient cover deforms and the wider
the channel it makes with the hard roll. This change in gap conformation lessens the
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Figure 17. Growth factor β as function of wavenumber at different capillary numbers. Case of
rigid roll and H0/R = 10−3. Curves are predictions of the viscocapillary model and circles are
Navier–Stokes solutions.

maximum and minimum pressure, elongates the region of nearly constant gap (the
‘footprint’ of the deformable roll), and moderates the pressure gradient just upstream
of the film meniscus. This last is related to the critical capillary number for the onset
of ribbing. That the deformation of the roll cover can delay the onset of ribbing is
confirmed by the stability analysis that follows.

4.3. Theoretical predictions of ribbing onset and pattern

The stability of each steady state was found by solving (13)–(16) and examining
the growth factor β, in units of V/(RH0)

1/2, versus disturbance wavenumber n, in
units of 1/(RH0)

1/2: see figure 17. This figure shows that when both rolls are rigid,
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Figure 18. Growth factor versus wavenumber at different elasticity numbers and capillary
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the steady flow is stable at values of the capillary number up to about 0.1, and
is unstable at higher values. Moreover, as the capillary number rises, the fastest-
growing disturbance (whose wavelength is at the maxima in the plotted curves)
shifts to progressively higher wavenumbers. As capillary number rises, the wavenum-
ber of the most dangerous perturbation increases and thus the wavelength of the
perturbed meniscus decreases. In figure 17 the open circles are more accurate pre-
dictions computed at Re = 0 and St = 0 from the full Navier–Stokes theory by
Coyle, Macosko & Scriven (1990). Despite the approximations in the viscocapillary
model, its predictions agree with those of Navier–Stokes theory, except at the higher
wavenumbers at Ca = 0.1 and 1. The computational cost of the viscocapillary model
is much smaller than for the solution of the full Navier–Stokes system and the eigen-
value problem that arises from the linear stability analysis described by Coyle et
al. (1990).

The growth factor as function of wavenumber at capillary numbers of 0.05 and 0.5
and at different elasticity numbers is shown in figure 18. When the rolls are rigid, i.e.
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when the elasticity number is zero, the flow is unstable at both capillary numbers.
The flow is stable, i.e. the coated film remains uniform in the transverse direction,
at elasticity number larger than 10−8 when the capillary number is 0.05. Thus, the
deformation of the roll cover delays the onset of ribbing.

The critical capillary number is the value at which the growth rate vanishes, i.e.
at the onset of instability, or marginal stability. It is plotted versus roll separation
in figure 19. The curve for rigid rolls accords with Coyle et al.’s (1990) results – the
open data points – though not as well at greater roll separations (larger ratios of
undeformed gap to roll diameter) as at smaller ones. The previous lubrication-based
stability analysis (Savage 1984 and Fall 1985) underpredicted the critical capillary
number by as much as 90%. At this range of capillary number, the boundary
condition used here, i.e. the Landau–Levich film flow equation, gives a much better
description of the flow near the film-split meniscus. As a soft and a hard roll are
pushed together, the onset of ribbing is delayed to higher capillary numbers, or to
higher coating speeds when viscosity and surface tension are fixed. The softer the roll,
i.e. the larger the elasticity number, the higher the critical capillary number at a given
roll separation. This is one of the advantages of using deformable gaps in forward
roll coating.

The roll cover deformation also alters the wavelength of the ribbing pattern. At
a capillary number of 0.5, the flow is unstable at all three elasticity numbers shown
in figure 18(b), but the most dangerous wavenumbers differ significantly. At fixed
roll separation and capillary number, the softer the roll, i.e. the larger the elasticity
number, the smaller is the wavenumber, i.e. the larger the ribbing wavelength. The
larger the wavelength of the fastest growing disturbances, the slower the rate of
levelling (cf. Anshus 1973). So, there are trade-offs to be made in choosing roll
covers.

At any given roll separation, beyond the roll speed at which ribbing becomes visible,
the wavelength falls as speed is raised (figure 20). Because the rate of levelling of
ribbing is proportional to an inverse power of wavelength as high as the fourth when
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the liquid is Newtonian (Orchard 1962 and Anshus 1973), the effect on ultimate film
uniformity can be profound and paradoxical, if the ultimate smoothness is enhanced
by raising roll speed.

An interesting feature is that, for rigid rolls, the predictions of wavelength, in units
of half-gaps, at different rolls separation all lie in a band that could be approximated
by a single curve. At an elasticity number of 10−7 and H0/R > 10−3 the resilient cover
does not deform appreciably and the results match those from rigid gaps. At small
enough gaps, i.e. H0/R < 2×10−4, the dimensionless wavelength λ/H0 generated from
a deformable gap is larger than those generated from rigid gaps.

The foregoing comparisons of the performances of deformable gaps and rigid ones
are all at fixed capillary number and roll separation, or undeformed gap. At a fixed
capillary number and gap, the flow rate through a deformable gap is greater than
through a rigid one because the resilient cover is compressed by the pressure that
develops in the flowing liquid. For practical purposes, it is better to compare the
performances at a given layer thickness on one of the rolls, for that is what is often
specified by the product design. It is appropriate to compare gap performances on
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the basis of fixed flow rate but different roll separations. To do so requires combining
information on how the flow rate, undeformed gap and elasticity number (roll cover
elastic modulus) are interrelated, and on the critical capillary number for the onset
of ribbing in each situation.

Figure 21 combines figures 10 and 19. The flow rate in units of roll diameter, i.e.
Q/2VR, varies little with capillary number and can be taken as independent of it. For
different roll covers (elasticity numbers) the gap-to-diameter ratio to obtain a given
layer thickness h∗/2R = Q/2VR can be read from the lower part of figure 21 and the
critical capillary numbers at the onset of ribbing can be read from the upper part. The
critical capillary number is higher the softer the roll. Therefore, for a given coated
layer thickness, or coat weight, the softer the roll, the higher the operating speed that
still yields a satisfactorily smooth coating, according to the viscocapillary model.

5. Experimental study
In order to verify the predictions of the viscocapillary model, experiments were

conducted to obtain the critical capillary number above which ribbing occurs for
both rigid and deformable gaps. A relative simple new detection technique was used
to find the critical conditions at apparent onset of ribbing and, for the first time, at
the onset of unsteady, or wandering ribbing.

5.1. Experimental set-up

The experimental set-up is sketched in figure 22. The left roll, which can be either
rigid or soft, is in a stationary mounting; the right roll can be adjusted horizontally
to change the gap. The gap was determined with two micrometers, one attached to
each side of the adjustable mounting.

The critical capillary number for onset of ribbing and the ensuing ribbing pattern
depend on the clearance between the roll surfaces (Pearson 1960). So, to obtain a
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Figure 22. Sketch of experimental set-up.

perfectly uniform ribbing pattern in the cross-web direction, the rolls have to be
perfectly parallel to each other. In this work, the degree of uniformity of the ribbing
wavelength in the transverse direction was used as an indicator of how nearly parallel
the rolls were.

The rolls were 20.3 cm in diameter and approximately 30.5 cm in length. The soft
roll was covered with a 13 mm thick rubber cover with a hardness of 40 durometer,
which would correspond to an elastic modulus of about 1.4× 106 Pa, were the rubber
ideal (Payne & Scott 1960). The runout of the surface of the rigid roll in its bearings
was 25 µm; of the soft roll, 10 µm.

The liquid used in the experiments was a glycerin–water solution of about 70%
weight glycerin. The viscosity varied from 92 to 115 cP and the surface tension was
about 56 mN m−1 at room temperature, i.e. 22 to 23◦C.

The capillary numbers at the onset of ribbing in symmetric film-splitting between
rigid rolls reported by Pitts & Greiller (1961), Mill & South (1967), Greener et
al. (1980) and Benkreira, Edwards & Wilkinson (1982) show the same trends and fall
in a narrow range, but vary by as much as 200% at some gap-to-diameter ratios.
The reason is the subjective nature of ‘ribbing onset’, as documented by Coyle et
al. (1990). In the present work too, it was found that as the rolls were sped up
(viscosity and surface tension fixed), the transition from a smooth to a wavy meniscus
in the film split was gradual, and that detecting the transition depended on the way
in which the scene was illuminated, magnified and viewed. Because our objective was
to compare performances of deformable and rigid gaps, the criterion used was not
critical, provided it was the same in both cases. The criterion we chose is described
in the following paragraph.

To measure wavelength easily we chose to observe the static contact line where
the surface of the liquid layer on one of the rolls intersected a flexible transparent
sheet of polyethylene terephthallate (PET) mounted as though to smooth the layer,
as shown in figure 22. The PET sheet was 120 µm thick, 200 mm long, and fastened
to a horizontal bar located about 90◦ circumferentially downstream of the film split.
The arrangement was such that the sheet removed no liquid from the roll surface and
did leave the layer totally smooth to the eye, except at speeds high enough (around
1 m s−1) that air fingering could be observed through the PET. The image of the
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Figure 23. Static contact line at Mylar film at a gap = 250 µm: (a) roll speed = 0.13 m s−1;
(b) roll speed = 0.15 m s−1 and (c) roll speed = 0.24 m s−1.

static contact line was viewed through the transparent sheet and was recorded with a
camera placed above it.

If the liquid layer arriving at the PET film was uniform in the transverse direction,
the static contact line was straight. The onset of ribbing was taken to be the first
visually detectable (unmagnified), apparent periodic (not sinusoidal) distortion of the
straight line, as shown in figure 23(a) (gap of 250 µm and speed of 0.13 m s−1).
What was detectable under the conditions adopted, we estimated to be about 4 µm
displacement over a length of 7 cm. As the speed was increased, the ribbing be-
came more apparent, as illustrated in figure 23(b) (gap of 250 µm and speed of
0.15 m s−1) and figure 23(c) (gap of 250 µm and speed of 0.24 m s−1). The wave-
length λ0 of the distortion corresponded the wavelength λ of the ribbing, however the
pattern observed in the PET sheet did not correspond to a cross-section of the film
profile.

The undeformed gaps were varied from 50 to 750 µm (in one case the gap was
nominally 20 µm), the recorded value being the average of measurements across the
roll width.

At each gap setting the speed of the rolls was raised in increments of 1 r.p.m.
until the static contact line displayed a perceptible distortion that was approximately
periodic along its length. This speed was taken to be the critical capillary number.
Raising the roll speed was then resumed and amplitude as well as wavelength were
measured. At a higher speed a second transition was encountered: the ribbing ceased
to be steady, instead migrating back and forth in the transverse direction, individual
ribs merging and dividing. The second transition we call the onset of unsteady
ribbing. Though the phenomenon must be common, it has not been reported in
previous roll coating studies, as far as we know. A similar phenomenon recently
caught the attention of physicists studying a flow in the annular space between two
cylinders (Rabaud, Michalland & Couder 1990).
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5.2. Results and discussion

In figure 24 the critical capillary numbers at the onset of ribbing in both rigid
and deformable gaps are compared with values from rigid gaps reported by other
researchers.

The onset of (steady) ribbing obtained with the Mylar film technique is at capillary
numbers 50 to 100% higher than the power-law correlation adopted by Mill & South,
120% higher than the correlation of Pitts & Greiller’s experimental observations, and
20 to 90% higher than the critical capillary numbers reported by Benkreira et al. But
the trend with gap is the same. Coyle et al. (1990) explained that ribbing amplitude
rises abruptly around the capillary number that would be critical if the smooth
flow were truly two-dimensional. Thus it appears that the detection technique we
chose in this work is somewhat less sensitive than the illumination and viewing set-
ups employed by past investigators. One reason for this is that here the onset of
apparently periodic distortion of the coated film was being observed 90◦ downstream
from the film-split meniscus. All past researchers were looking directly at the film-split
meniscus or reflected images of it. Nevertheless our technique is adequately accurate
for our purpose of comparing the performances of rigid and deformable gaps and
gives accurate measurements of the wavelength of ribbing patterns.

The critical roll velocity (capillary number) is a function of the minimum clearance
between the rolls. At small gaps (50 µm) the maximum velocity at which visually
uniform film could still be obtained was 0.05 m s−1. As the gap widens, the critical
velocity (capillary number) increases; it is 0.4 m s−1 at a gap of 750 µm. A uniform
film can be obtained at a much faster speed.

When the gap is relatively wide compared to the roll diameter, i.e. when the ratio
of half-gap to roll radius is large enough, e.g. H0/R > 2×10−3 (refer to figure 24), the
capillary numbers at ribbing onset in the deformable gap and in the rigid gap are the
same. In wide gaps, the pressure that develops in the liquid is not enough to deform
the resilient cover. In narrower gaps, however, ribbing first appears downstream of a
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Figure 25. Wavelength, in units of half-gap, of ribbing from (a) rigid and (b) deformable gaps.

deformable gap at capillary numbers higher than in a rigid gap. Thus an apparently
smooth liquid layer can be obtained from the forward-roll film split at a deformable
gap at a higher speed than from a rigid gap. The speed advantage is only 5% in a rela-
tively wide gap (H0/R ≈ 1×10−3) but climbs to 60% in a narrower gap (H0/R = 2.5×
10−4). The delay in the onset of ribbing when a deformable roll is used accords qual-
itatively with the theoretical predictions of the viscocapillary model (see figure 19).

Figure 25a shows ribbing wavelength λ in units of half-gap H0, i.e. the ratio λ/H0,
versus capillary number µV/σ from rigid gaps of 50 to 750 µm. At any given gap, after
the roll speed is great enough that ribbing is visible, the wavelength falls as speed is
raised. This behaviour is illustrated by the photographs in figure 26. The wavelength
was divided by almost three as the roll speed was increased from 0.15 m s−1 to
0.24 m s−1. The viscocapillary model presented here was able to predict well this
tendency – see figure 20(a). The experimental data from the different gaps also lie in
a band (figure 25a), as predicted by the viscocapillary model.

Figure 25b shows ribbing wavelength versus capillary number measured in de-
formable gaps of nominal clearance from 20 to 750 µm. At large roll separation
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(b)(a)

Figure 26. Static contact line at gap = 250 µm and (a) roll speed = 0.15 m s−1;
and (b) roll speed = 0.24 m s−1.

the resilient roll cover does not deform appreciably and the results reproduce those
from the rigid gaps. At small roll separation there is a major difference: at the same
capillary number the wavelength generated by the deformable gaps is greater than
that generated by the rigid gaps. The ratio is 2 at a gap of 250 µm and capillary
number of 0.3 and appears to be as high as 5 at a gap of 50 µm and capillary number
of 0.15. Consequently the rate of levelling of ribbing downstream of the film split
may be substantially slower when a deformable gap is used. The viscocapillary model
presented here was able to predict well this behaviour – see figure 20(b).

6. Conclusion
Flow between deformable rotating rolls was analysed using lubrication theory,

coupled with a one-dimensional elastic model of the resilient roll cover and the film-
flow equation to describe the film-split region. With this new boundary condition for
Reynolds’ equation at the free-surface meniscus, the results yielded by lubrication
theory were in accordance with the complete Navier–Stokes solution, even at low
capillary numbers.

The stability of the base lubrication flow to transverse disturbances was analysed by
examining the time-dependent two-dimensional response to infinitesimal perturbations
in order to identify those that grow fastest. The critical capillary numbers for the onset
of ribbing obtained with the analysis presented here were in close agreement with
linear stability analysis applied to the solutions of the two-dimensional Navier–Stokes
system. Previous results using the lubrication approximation underpredicted the onset
of ribbing.

The results presented show how different parameters can affect the performance of
a deformable roll gap, and can be used to infer how a deformable cover can be used
to optimize the process, i.e. obtain a smooth film at higher line speeds.

Experiments were performed in order to validate the predictions. The critical
capillary numbers for the onset of ribbing in rigid gaps were higher than previously
reported in the literature. The reason is that we were observing the coated film 90◦

downstream the film-split meniscus and some levelling may have occurred. However,
the technique adopted in this work gives accurate measurements of the wavelength
of the ribbing pattern and is adequate for comparing the performance of rigid and
deformable gaps.

The behaviour observed in the experiments shows the same trends as the visco-
capillary model predictions: the onset of ribbing occurred at higher capillary number
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when a deformable gap was used and the ribbing wavelength falls as capillary number
rises.

This analysis can be extended to the case where the undeformed roll surfaces would
interfere, i.e. a negative gap. Viscoelastic effects of the rubber cover can be introduced
in the formulation by using a combination of springs and dashpots in place of the
linear springs used here (cf. Carvalho & Scriven 1994b).

The viscocapillary model predicts an even film split if the rolls have the same
speed, i.e. speed ratio equal to unity. Experimental evidence shows that this is not
always true. Details on the effect of roll deformation on the film split can be found by
solving the complete Navier–Stokes equation coupled with plane-strain deformation
for resilient roll cover.

T. J. Anderson provided skilled assistance with the experimental study. M. S. Car-
valho was supported by a fellowship from CAPES (Department of Education, Federal
Government of Brazil). Further support came from cooperating corporations through
the Center for Interfacial Engineering and was supplemented by the National Sci-
ence Foundation and from computational grants from the Minnesota Supercomputer
Institute.
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